Kinetics of NAD(P)H:quinone oxidoreductase I (NQO1) inhibition by mitomycin C in vitro and in vivo.

نویسندگان

  • Daniel L Gustafson
  • David Siegel
  • Jeffrey C Rastatter
  • Andrea L Merz
  • Jacqueline C Parpal
  • Jadwiga K Kepa
  • David Ross
  • Michael E Long
چکیده

The bioreductive activation of the antitumor quinone mitomycin C (MMC) by NAD(P)H: quinone oxidoreductase 1 (NQO1) is complicated by the ability of MMC to also act as a mechanism-based inhibitor of NQO1 in a pH dependent manner. Inhibition of NQO1 by MMC has been studied in purified enzyme preparations and in cultured cells but has not determined in vivo. In the studies presented here, NQO1 activity was measured in mouse tissues following treatment with MMC or the potent mechanism-based human NQO1 inhibitor 5-methoxy-1,2-dimethyl-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936). NQO1 activity was significantly decreased at 1, 2, and 4 h following MMC (10 or 20 mg/kg) treatment in kidney and lung but was unchanged in brain, heart, liver, and bladder. ES936 (1 mg/kg) treatment led to a significant and much more potent inhibition of NQO1 in all murine tissues analyzed except for bladder. To extrapolate these in vivo results from mice to humans, the species-specific kinetics of NQO1 inactivation by MMC was determined in vitro using mouse, rat, and human recombinant NQO1 proteins. Results showed the inactivation kinetics of mouse and human proteins by MMC were similar. Treatment of human and murine endothelial cells with MMC or ES936 showed similar inhibition of NQO1 activity. The aforementioned results clearly demonstrate that MMC can serve as a substrate for NQO1 in vivo; however, the metabolism resulting in enzyme inactivation is possibly tissue-specific. Furthermore, the kinetic similarities for inactivation between murine and human forms of NQO1 show these results are apropos to clinical use of MMC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytotoxicity Metabolic Activation of Mitomycin C and Bone Marrow Role of NAD(P)H:Quinone Oxidoreductase 1 in In vivo

NAD(P)H:quinone oxidoreductase 1 / (NQO1 / ), NQO1 along with NRH:quinone oxidoreductase 2 / (NQO2 / ), and wild-type (WT) mice were exposed to five once weekly doses of mitomycin C. The mice were euthanized 15 weeks after the first dose. Blood cell counts and histologic analyses were done. WT and NQO2 / mice showed hypocellularity and a significant increase in adipocytes in bone marrow. They a...

متن کامل

In vivo role of NAD(P)H:quinone oxidoreductase 1 in metabolic activation of mitomycin C and bone marrow cytotoxicity.

NAD(P)H:quinone oxidoreductase 1(-/-) (NQO1(-/-)), NQO1(+/-) along with NRH:quinone oxidoreductase 2(-/-) (NQO2(-/-)), and wild-type (WT) mice were exposed to five once weekly doses of mitomycin C. The mice were euthanized 15 weeks after the first dose. Blood cell counts and histologic analyses were done. WT and NQO2(-/-) mice showed hypocellularity and a significant increase in adipocytes in b...

متن کامل

Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India

NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...

متن کامل

Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin.

NAD(P)H:quinone oxidoreductase 1 (NQO1) regulates the stability of the tumor suppressor WT p53. NQO1 binds and stabilizes WT p53, whereas NQO1 inhibitors including dicoumarol and various other coumarins and flavones induce ubiquitin-independent proteasomal p53 degradation and thus inhibit p53-induced apoptosis. Here, we show that curcumin, a natural phenolic compound found in the spice turmeric...

متن کامل

NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity.

NAD(P)H:quinone oxidoreductase (DT-diaphorase; DTD) is an obligate two-electron reductase which may play a role in the bioactivation of antitumor quinones such as mitomycin C (MMC). We studied 10 colon carcinoma cell lines showing different levels of DTD activity (range, 0-3447 nmol/min/mg protein), as measured by the reduction of dichlorophenolindophenol. Expression of the NAD(P)H:quinone redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 305 3  شماره 

صفحات  -

تاریخ انتشار 2003